TUTORIAL do OCTAVE

GNU-Octave versão 2.1.42

Aluna: Camili Ambrósio RA: 042426 Disciplina: MA111 Professor: Márcio Rosa Segundo semestre 2005.

Glossário

O que é o Octave? Onde Obter?	2
Introdução	3
Como instalar	4
Como ligar e como sair	6
Como usar : As operações básicas	7
As Variáveis	10
As Constantes	12
Matrizes	13
Comando disp () e Funções	16
Fatorial, Limite e Integral	.17
Como funciona os logs, salvar e editar	.18
Gráficos	19
Gráfico 3D	21
Gráfico de superfície	28
Bibliografia	.32

TUTORIAL do programa OCTAVE

O que é o Octave?

Resumidamente, é um software livre capaz de resolver cálculos numéricos e também pode ser usado como linguagem de programação de alto nível.

O GNU/Octave é uma linguagem de alto nível basicamente voltada para computação gráfica. Esse programa prove uma interface por linha de comandos – não há interface gráfica - para solução numérica de problemas lineares e, também, não-lineares e para implementar outros experimentos numéricos usando uma linguagem que compatível com o Matlab (que é um programa comercial). O programa pode ser utilizado também em modo script (textos de programação) e permite incorporar módulos escritos nas linguagens C++, C, Fortran e outras. O GNU/Octave foi escrito por John W. Eaton e muitos outros, estando disponível na forma GPL.

O GNU Octave utiliza o GNUPLOT.

Onde posso obter?

Na Internet em sites especializados na área de matemática, sites de professores e pesquisadores e também no site oficial do Octave. Segue abaixo alguns deles:

- Octave http://www.octave.org
 - 1. mais precisamente em : http://www.octave.org/download.html
- GNUPlot http://ww.gnu .org

INTRODUÇÃO

Este tutorial visa mostrar alguns comandos e exemplos de exercícios que podemos resolver com a ajuda deste programa Octave. No meu caso, instalei o GNU/Octave 2.1.42 - disponível no site do Octave acima citado – no Windows XP, mas poderia ser instalado em outros sistemas operacionais também, inclusive no Linux – onde geralmente é utilizado, pois aí já se utiliza softwares livres desde o sistema operacional. As explicações de instalação e para abrir o programa serão feitas a partir do Windows XP, lembrando que no Linux pode-se abrir o programa (depois de instalado) pelo terminal. Mas nosso objetivo é mostrar o programa. Veja na bibliografia ao final deste Tutorial para ver sites em que ensinam como instalar em outros sistemas operacionais.

Como instalar

Após ter feito o download do programa, procurar na pasta em foi salva em seu computador e clicar no arquivo. Na instalação, após ler a licensa, clique em "I Agree".

O GNU Octave 2.1.42 + octave-forge + gnuplot 3.8.0 + epst	X
You must read the following license before installing:	
SuperLU - http://www.netlib.org/scalapack/prototype - BSD	^
This package has been assembled by Andy Adler <aadler@uottawa.ca>. The assembled work is licensed under the GNU GPL.</aadler@uottawa.ca>	
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.	
[]	~
Cancel Nullsoft Install System v1.98	

A seguir aparecerá a tela abaixo. Selecione o tipo de instalação mais adequada e clique em "Next".

Select the type of install:	Install for All Users
	🔰 Octave Files
	🔰 🔰 Start Menu All Users
	🐂 Start Menu This User

Agora selecione o diretório de seu computador que deseja que o Octave seja instalado e clique em Install.

🖸 GNU Octave 2.1.42 + octave-forge + gnuplot 3.	8.0 + epst 🔀
Please select a location to install GNU Octave + octave-	forge
Select the directory to install GNU Octave 2.1.42 + octave-forge	+ gnuplot 3.8.0 + ep
C:\Arquivos de programas\GNU Octave	Browse
Cases required: 27 2MP	
Space required: 37.3MB Cases susilable: 25.2CP	
place available. 20.20b	
Cancel Nullsoft Install System v1.98 < Back	Install

Aparecerá a seguinte tela:

🖼 C:\Arquivos de programas\GNU Octave\bin\sh.exe	- 🗆 ×
Welcome to Octave	<u> </u>
Octave version 2.1.42 has been successfully installed on your computer. At this point the software will customize the octave installation for your machine.	
STEP 1	
Octave has been optimized for various computer architectures. The following optimized versions of octave are available:	
1: octave-2.1.42-athlonatlas 2: octave-2.1.42-noatlas 3: octave-2.1.42-p2atlas 4: octave-2.1.42-p4atlas Choose which version to install:	
	·

Escolha o número da versão que queira e aperte enter. Será instalado o Octave.

Como ligar o programa

Selecione o arquivo no diretório que você escolheu acima. Talvez o programa esteja também no menu 'iniciar' do seu computador e pode clicar no programa por lá:

iiii 🔪 🔰	O GNU Octave 2.1.42
i	🔘 GNU Octave 2.1.42 (cmd)
iiii 🔸	🔘 Manual - EPSTK (Graphics)
i	💿 Manual - GNU Octave 2.1.42
🖬 GNU Octave 2.1.42 🔹 🕨	🗑 Uninstall GNU Octave 2.1.42

Aparecerá a seguinte tela:

Como sair

No programa, escreva "exit" ou "quit" (somente o que está entre as aspas, ou seja, sem as aspas). E para 'quebrar' linha (geralmente quando digitou algo errado), aperte ctrl+c e estará já na nova linha!

Como usar

Agora que já instalamos e sabemos ligar o programa, precisamos utilizá-lo! Vamos então aprender a mexer com o GNUOctave. Veremos alguns comandos e tentaremos fazer alguns exercícios.

OS COMANDOS

As operações básicas

Para somar, subtrair, multiplicar e dividir, podemos fazer de tal modo:

Operação	Símbolo
Somar	+
Subtrair	-
Multiplicar	*
Dividir	/

No programa, vemos assim ">>" para entrada de dados (o que digitamos, ou melhor, é o *prompt* do GNU Octave) e "ans = " (de 'answer' em inglês, que significa resposta.), ou seja, a saída que o programa nos dá: o resultado (veja figura ao lado). Quando tiver o sinal ">>" você pode digitar. Por exemplo: "1+1" e, em seguida, aperte 'enter' para o programa rodar o seu comando.

O retângulo preto na figura ao lado é como o programa deixa para você ir escrevendo.

Mais operações

Operação	Comando
raiz $()$	sqrt(x)
potência	x**y
conjugado	х'
Aumentar de um em um	x++

Operação	Comando
Decrementar de um em um	Х
Comentário	% ou #
Exponencial	exp ()
Logaritmo natural	log ()

Funções pré-definidas

Números Comp	lexos
Conjugado de x	conj(x)
Parte imaginária de x	imag(x)
Parte real de x	real(x)
Valor absoluto	abs(x)
Argumento	arg(x)

Trigonometria
sin(x): Seno de x
cos (x): Cosseno de x
tan(x): Tangente de x
asin(x): Seno inverso de x
acos (x): Cosseno inverso de x
atan(x): Tangente inverso de x
sinh(x): Seno hiperbólico de x
cosh (x): Cosseno hiperbólico de x
tanh(x): Tangente hiperbólico de x
asinh(x): Seno hiperbólico inverso de x
acosh (x): Cosseno hiperbólico inverso de x

atanh(x): Tangente hiperbólico inverso de x

Arredondamento:

floor(**x**): Arredonda x para baixo

ceil(**x**): Arredonda x para cima

round(**x**): Arredonda x para o inteiro mais próximo

Vetores e Matrizes		
length: Tamanho de um vetor		
size: Dimensão de uma matriz		
reshape: Muda a dimensão de uma matriz		
zeros: Preenche uma matriz com Zero		
ones: Preenche uma matriz com Um		
eye: Matriz-Identidade		
linspace: Vetor com elementos espaçados linearmente		
logspace: Vetor com elementos espaçados logaritmicamente		
prod: Produto dos elementos de um vetor		
sum: Soma dos elementos de um vetor		
sumsq: Soma do quadrado dos elementos de um vetor		

* 1

Álgebra Linear:

det: Determinante de uma matriz

inv: Matriz inversa

rank: Matrix rank (?)

eig: Eigenvalues (?)

svd: Decomposição em valores singulares

Algumas aplicações destas funções:

```
>> sin((pi/6))
ans = 0.5000000000000000
>> x=2
x = 2
>> y=3
y = 3
>> x**y
ans = 8
>> log 1
parse error:
>>> log 1
ans = 0
>> cam = 9.21987
cam = 9.21987000000000
>> round(cam)
ans = 9
>> floor(cam)
ans = 9
>> ceil(cam)
ans = 10
>> ■
```

Observação importante: você pode digitar ";" (Ponto-e-vírgula) após uma certa linha de comando. Isto serve para o programa não dar a resposta do 'cálculo' na tela. Ele apenas armazena na memória dele a informação. E, para exibir o valor de uma variável, basta escrever o nome da variável desejada que o Octave exibirá o seu valor logo abaixo.

As variáveis

As variáveis são criadas por você, durante o uso deste programa, e podem assumir valores numéricos (ou seja, reais ou complexos), matrizes, vetores, strings (seria um 'vetor de caracteres') entre outros. Para criar variáveis basta digitá-la no programa, assumir um valor para ela e pronto! Veja uns exemplos:

>> a = 3 Na figura ao lado, criamos variáveis e omitindo a resposta do programa.

>> a a = 3 >> >> a = 3; >> a a = 3 >> a; >> 📕

a = 3

>> c = 9 + 5i; >> c c = 9 + 5i >> a = 9; >> b = 34235; >> c = a + 2b; parse error: >>> c = a + 2b; >> c = a + 2*b; >> c c = 68479 >>

Na figura ao lado, criamos uma variável c = 9 + 5i (um número complexo) após declaramos a e b e c = a + 2b. Percebe-se que apareceu um erro. O Octave indica (^) em qual lugar está o erro. E foi a falta de asterisco (*) pra indicar a multiplicação de 2*b. Então, este programa não aceita a omissão deste sinal de multiplicação.

Agora, mexendo com strings. A declaração para uma variável string é diferente do que pra

uma numérica. Veja:

```
>> %agora declararei uma variavel tipo string
>> nome = camili;
error: `camili' undefined near line 12 column 8
error: evaluating assignment expression near line 12, column 6
< Esta declaracao eh diferente das variaveis a, b, c.
>> nome = "camili";
>> nome
nome = camili
>> nome
nome =
100 98 110 106 109 106
```

Quando tentei declarar a variável nome como "nome = camili;", não deu certo pois para declarar uma string é necessário o uso de aspas no começo e final da string, como em : nome = "camili"; . Se quisermos, podemos usar uma string como "um número". Assim como fiz em 'nome++;' o símbolo ++ é para adicionar uma unidade na variável, mas como ela é um vetor de caracteres, o programa vai e usa os valores em ASCII (American Standard Code for Information Interchange) que cada caractere possui. Então:

Caractere	"Valor do caractere"	Valor + 1
С	99	100
а	97	98
m	109	110
i	105	106
1	108	109
i	105	106

E quando pedimos, após o comando nome++, para mostrar o valor de 'nome', ele apareceu uma matriz (ou vetor) linear (1 linha x 6 colunas) com os valores do caractere acrescido de um.

As constantes

Constantes são variáveis que o Octave cria toda vez que é inicializado. É possível substituir o valor de uma constante caso seja necessário. Alguns exemplos de constantes são : pi , e, infinito, verdadeiro (true), falso (false). Agora, no programa:

```
>> e
e = 2.7183
>> pi
pi = 3.1416
>> inf
inf = Inf
>> true
true = 1
>> false
false = 0
>> True
error: `True' undefined near line 21 column 1
>> False
error: `False' undefined near line 21 column 1
>> Inf
Inf = Inf
>> ■
```

Observe que há diferenças entre maiúsculas e minúsculas para algumas constantes. Como 'true' e 'True'. Algumas versões de Octave utilizam 'true' e outras utilizam 'True'. Há também o 'inf' que é aceito com maiúscula ou minúscula em sua inicial, que é o infinito.

```
>> pi
pi = 3.1416
;>> e
e = 2.7183
>> format long
>> pi
pi = 3.14159265358979
>> e
e =
      2.71828182845905
>> format short
>> pi
pi = 3.14
;>> e
e = 2.72
>> format
>> e
e = 2.7183
>> pi
pi = 3.1416
>> eps
eps = 2.2204e-16
>> format long
>> tormat tong
>> eps
eps = 2.22044604925031e-16
>> realmax
realmax = 1.79769313486232e+308
>> real min
parse error:
>>> real min
```

Uma coisa interessante é que você pode escolher a quantidade de casas que você quer que apareça quando digitar a constante, ou melhor, você pode formatar o tipo da constante.

Assim, vemos que há o *format long*, que apresenta 15 casas decimais. O format short, que aparece duas casas decimais, o *format* que nos dá 4 casas após a vírgula e, também, há *format bank*, com duas casas após a vírgula e com números complexos, não aparece a parte imaginária. Mais algumas constantes:

>> realmin realmin = 2.22507385850720e-308

Matrizes

Para criar um vetor ou uma matriz, basta você inserir os valores destes entre colchetes: []. Sendo que valores na mesma linha são separados por vírgula, e valores na mesma coluna são separados com ponto-e-vírgula. Abaixo criei as matrizes M1x3, N3x1 e O3x3.

 $M = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$ $M = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$ $N = \begin{bmatrix} 1; 2; 3 \end{bmatrix}$ $N = \begin{bmatrix} \frac{1}{2} \\ \frac{3}{3} \end{bmatrix}$ $N = \begin{bmatrix} 1, 2, 3; 4, 5, 6; 7, 8, 9 \end{bmatrix}$ $O = \begin{bmatrix} 1, 2, 3; 4, 5, 6; 7, 8, 9 \end{bmatrix}$ $O = \begin{bmatrix} \frac{1}{4} \\ \frac{2}{5} \\ \frac{6}{8} \end{bmatrix}$

>> 🔳

Para selecionar um valor de dentro de uma matriz, devemos inserir seu nome(como M, N, O), seguido pela posição do elemento dentro de parênteses : (). Para localizar qual valor são as seguintes posições: matriz M (1,3), matriz (2,1) e matriz O (2,2).

```
>> 0(3,:)
ans =
7 8 9
>> 0(:,3)
ans =
3
6
9
>> 0(end,end-1)
ans = 8
>> ■
```

>> M(1,3) ans = 3 >> N(2,1) ans = 2 >> 0(2,2) ans = 5 >>

Também podemos ver os elementos todos de uma certa linha ou coluna. Utiliza-se o ":" para exibir todos os elementos daquela linha ou coluna. E também existe o comando 'end' na matriz, que significa a última posição. (no caso da matriz O, é o 3) e também pode ser usado

referenciais do 'end', que são relativos ao final da matriz, como o end-1. Veja ao lado (esquerda). O(end,end-1) é equivalente a dizer O(3,3-1) que é O(3,2).

Podemos adicionar, subtrair, achar a transposta de matrizes, entre outras operações.

```
>> A =
>> B =
          [1,2;2,1];
[2,1;1,2];
>> A+B
ans =
                           3
3
                                                        3
3
>> A*B
ans =
                                                        5
                           4
                           5
                                                        4
>> transpose(A)
ans =
                                                        2
                            1
                            ž
>> C=[1,2;3,4];
>> transpose(C)
ans =
                            1
2
                                                        3
                                                        4
```

3

Vimos então que para somar matriz A com a B, basta digitar : A + B, para multiplicar é A*B e para mostrar a transposta é o comando transpose(C) ou C', por exemplo. Para multiplicar uma matriz M =[1,2,3] por um escalar n, como n=3, fazer: 3*M:

>> 3*M ans =

6	

Para achar o determinante duma matriz, como a matriz O citada acima, utilizar comando det(O) . Veja abaixo o det(O) e, também, a transposta da matriz O feita de duas maneiras diferentes:

9

>> det(0) ans = 0 >> 0' ans =			
	1	4	7
	2	5	8
	3	6	9
>> transpose(0) ans =			
	1	4	7
	2	5	8
	3	6	9

Também há comandos prontos para matrizes. Tais como:

- 1. ones(N,M) para construir uma matriz N × M com elementos de valor 1.
- 2. zeros(N, M) para construir uma matriz N ×M com elementos de valor 0.
- 3. *eye*(*N*,*M*) para construir uma matriz com elementos de valor 1 na diagonal.
- 4. rand(N,M) para construir uma matriz N × M com elementos de valor.

Veja:

>> ones(3,3) ans =		
1	1	1
1	1	1
1	1	1
>> zeros(3,3) ans =		
0	0	0
0	0	0
0	0	0
>> eye(3,3) ans =		
1	0	0
0	1	0
0	0	1
>> rand(3,3) ans =		
0.323272615671158	0.480424463748932	0.049759462475777
0.466094881296158	0.325780987739563	0.124100692570210
0.477467060089111	0.266319215297699	0.591843783855438

E se eu pedir para fazer uma matriz(2,4) (ou seja, não é uma matriz quadrada) e completá-la com 1 na diagonal? (comando eye(2,4)). Observe abaixo o que encontramos:

>> eye(2,4) ans =

1	0	0	0
0	1	0	

O Comando disp()

O comando disp() serve para exibir somente o valor final da entrada do usuário. Fica melhor de entender ao visualizar:

>> x=9; >> y = 5; >> x y = 5 >> y y = 5 >> disp(x) 9 >> disp(x+y) 14 >> disp(1+1+3) 5

Aqui declarei o x=9 e y=9 e em seguida pedi para mostrá-los e o programa deu a seguinte saída: x = 9, por exemplo. Usando este comando disp(), vemos que com disp(x), ele apenas dá a saída o valor do que está entre parênteses (no disp()). Pode ser com variáveis e com números.

```
>> format long
>>
>> disp("0 valor do numero eh:"),disp(e)
0 valor do numero eh:
2.71828182845905
>> ■
```

Agora testei com dois 'disp()'. Perceba que há uma vírgula entre eles! Num utilizei uma string e em outro coloquei o

número 'e'. Olhe a figura acima para ver o que foi feito e qual a saída do programa.

Funções

Para definir funções, usa-se o comando "function" e em seguida a declaração da função

(y=f(x)), por exemplo, seguida da função:

```
>>

>> function y = f(x)

y=x^3+(3*x^2)-(2*x)+9;

endfunction

>> ■
```

Agora outra função e já resolvendo-a:

```
>> function y = f(x)
y=x^3+x^2-3*x-3;
endfunction
>> [x, info] = fsolve ("f", 1.)
x = 1.73205080756888
info = 1
>> [x, info] = fsolve ("f", 0.)
x = -1
info = 1
```

Observação: o valor info=1 indica que a solução converge.

Alguns breves comandos:

Fatorial

Usar a função factorial(n) onde n é o número escolhido.

```
>> factorial(4)
ans = 24
>> factorial(3)
ans = 6
>> factorial(38)
ans = 5.23022617466601e+44
>> factorial(7)
ans = 5040
>> ■
```

Limite $\lim_{x \to 0^-} f(x)$

Para resolver este limite, o comando é : limit(f(x), x = 0, Left). Observar bem os parênteses, vírgulas, letras maiúsculas.

Integral

Para calcular a integral definida: $\int_{0}^{1} f(x) dx$ usar o comando: int(f(x), x = 0..1) integrate(função, variavel); Calculo da integral definida em um intervalo de a até b: integrate(função, variável,a,b);

Somatória

Podemos usar o comando sum(f(i), i = 1..n) para fazer uma somatória.

Como funciona os logs, salvar e editar

Para salvar os logs num arquivo:

```
>> diary on
>> 4+5
ans = 9
>> 7+45+3453/32
ans = 159.91
>> diary off
>> ■
```

• Log diário

Digite *diary on* para ativá-lo e *diary off* para desativar. Isto funciona como criar um arquivo para guardar as informações de um certo cálculo ou função, por exemplo.

Para copiar o log também pode usar o famoso "ctrl+c" e "ctrl+v" para colá-lo em algum arquivo como num bloco de notas, por exemplo. Observem como fica um exemplo:

>> 6*4 ans = 24

A utilização do GNU-Octave apresenta um potencial maior quando se faz uso de recursos de programação. Com este propósito, é importante conhecer as formas de controlar os fluxos de cálculos **if**, **for**, **while** e **switch**. Neste tutorial, não darei ênfase a isto pois no momento, o essencial são os comandos matemáticos, para as aulas de cálculo.

Os comandos do Gnu/Octave podem ser salvos em um arquivo texto de extensão **.m** ou **.oct**, como por exemplo **prog.m.** O que ajuda com a utilização depois dos comandos que você digitou no Octave, para o programa Matlab, que utiliza a extensão .m também.

Fazendo gráficos

Para fazer uma circunferência conhecida. Comando:

```
>> z=(-10:0.1:10)';
>> x=sin(z);
>> y=cos(z);
>> gset tittle "Circunferencia por Camili"
>> plot(x,y);
>> pause
```

Abrirá uma nova janela com o seguinte gráfico:

Para os gráficos da página seguinte, os comandos utilizados foram:

```
>> z=(-10:0.1:10)';
>> x=sin(z);
>> gset title "Circunferencia por Camili"
>> plot(x,y);
>> pause
>> gset title "Circunferencia por Camili + uma grade"
>> grid "on"
>> plot(x,y);
>> pause
>> gset title "Circunferencia + grade + eixos"
>> gset title "Circunferencia + grade + eixos"
>> gset xlabel "Aqui eh o Eixo x"
>> gset ylabel "Aqui eh o Eixo y"
>> grid "on"
>> plot(x,y);
```


Podemos adicionar uma "grade" atrás do gráfico. Basta usar o comando grid "on":

Também podemos adicionar 'nome aos eixos':

Para fazer um gráfico 3-D, basta usar:

```
>> z=(-10:0.1:10)';
>> x=sin(z);
>> y=cos(z);
>> gset title "Um grafico 3D: Curva no espaco 3D"
>> grid "on"
>> plot3(x,y,z);
>> ■
```


Podemos mudar o "ângulo" de ver este gráfico. A maneira mais prática é clicar em cima do gráfico plotado, com botão esquerdo do mouse, aparecerá um 'desenho' de duas setas, indicando um movimento e arrastar o cursor pros lados até encontrar outro ângulo que agrade. Veja abaixo o gráfico acima com uma mudança no ângulo:

Também podemos mudar a cor do gráfico:

Para cor ciano, temos *plot3(x,y,z, "5")*; . Veja:

```
>> z=(-10:0.1:10)';
>> x=sin(z);
>> y=cos(z);
>> grid "on"
>> plot3(x,y,z,"5");
>> grid "on"
>> grid "on"
>> plot3(x,y,z,"5");
```


view: 60.0000, 30.0000 scale: 1.00000, 1.00000

Para um gráfico verde, basta, no comando acima, digitar : "2", ao invés de "5".

view: 60.0000, 30.0000 scale: 1.00000, 1.00000

Gráfico de funções trigonométricas:

Abaixo segue o gráfico do seno e o comando utilizado no Octave para plota o gráfico seno, o gráfico do cosseno e gráfico do seno junto com o do cosseno(veja páginas seguintes).

```
>> m=(0:0.01:2*pi)';
>> n=sin(m);
>> a=cos(m);
>>
>> gset title "grafico do seno"
>> plot(m,n);
>> gset title "grafico do cosseno"
>> plot(m,a)
>> clg
>> gset title "grafico seno mais grafico do cosseno"
>> data=[m,n,a];
>> gplot data with lines, data using 1:3 with impulses 8
>> ■
```


Dois gráficos em um! Gráfico do seno e do cosseno:

O mesmo gráfico, usando o comando hold on:

```
>> clg
>> gset title "grafico seno mais grafico do cosseno - usando hold on"
>> data=[x,y,z];
error: `x' undefined near line 14 column 7
error: evaluating assignment expression near line 14, column 5
>> data=[m,n,a];
>> gplot data with points 8 4
>> hold on
>> gplot data using 1:3 with line 5
>> pause
>> hold off
```

💹 gnuplot graph

- O X

Também podemos usar o comando stairs(x,y):

```
>> c=(0:0.5:2*pi)';
>> y=sin(x);
error: `x' undefined near line 21 column 7
error: evaluating argument list element number 1
error: evaluating assignment expression near line 21, column 2
>> y=sin(c);
>> z=cos(c);
>>
>> clg
>> stairs(c,y)
ans = []
>> ■
```

E, na janela do gnuplot aparecerá o gráfico abaixo:

💹 gnuplot graph

- 🗆 🗙

Gráfico de uma superfície. Comandos:

O gráfico:

Mais uma superfície e seus comandos:

O legal do Octave é que podemos colocar na janela lá do gnuplot, dois gráficos distintos, um ao lado do outro. Também podemos colocar 4 gráficos! Veja:

Para 4 gráficos temos:

```
>> clg
>>
>> subplot(2,2,1)
>> gset title "Seno"
>> gplot data 1
parse error:
>>> gplot data 1
>>
>> gplot data 1
>>
>> gplot data 1
>>
>> subplot(2,2,2)
>> gset title "Cosseno"
>> gplot data2
>>
>> subplot(2,2,3)
>> gset title "Seno e cosseno"
>> gplot data1,data2
>>
>> subplot(2,2,4)
>> gset title "Raiz de x"
>> gplot sqrt(x)
>>
```


Quando digitamos os comandos para dois gráficos, a janela do gnuplot estará assim:

Com 3 comandos já enviados, teremos esta outra imagem:

E, enfim, para os quatro gráficos na mesma janela, teremos esta imagem:3

Observações:

A tabela de números e cores para gráfico é:

Número Cores no Gnuplot

- 1 vermelho
- 2 verde
- 3 azul
- 4 magenta
- 5 ciano ('azul escuro' diferente)
- 6 marrom

Explicação de alguns comandos:

clearplot ou clg : limpam a janela que abriu quando plotamos o gráfico.

rand(,): pega números aleatórios no intervalo dado.

Bibliografia

Para a montagem deste projeto, utilizei diversos sites da Internet.

- http://www2.prudente.unesp.br/dcartog/galo/octave/fct.htm (muito importante para entender os gráficos e refazê-los).
- http://www.octave.org/FAQ.html (próprio site do Octave. Nesta sessão há várias perguntas e suas respostas ajudaram em partes a conseguir mexer com este programa).
- 3. http://sunsite.univie.ac.at/textbooks/octave/octave_toc.html
- 4. http://ssdi.di.fct.unl.pt/cursos/pce/0405-1/material/aulas_praticas/octave/guia/guia_octave.html
- http://paginas.fe.up.pt/~jcard/Octave_links_org.html (há links para sites sobre Octave e, também, para Matlab).
- 6. http://www.aims.ac.za/resources/tutorials/octave/index.php (outro site com um tutorial muito bom sobre Octave).
- http://www.math.uic.edu/~hanson/Octave/OctaveNonlinearEG.html (há vários exemplos resolvidos neste site).
- http://volga.eng.yale.edu/sohrab/matlab_tutorial.html#the_basics (outro site com um bom tutorial).

Comentário Final:

Infelizmente não deu para colocar todos comandos do Octave neste tutorial. Como é um tutorial básico, não dei ênfase a vários comandos, mas quem se interessar, pode visitar os sites acima – vide Bibliografia – que são muito bons (principalmente os que eu comentei ali).